NEW CHARACTERIZATIONS OF EULERIAN AND BIPARTITE BINARY MATROIDS

M. M. SHIKARE

Department of Mathematics, University of Pune, Pune 411 007, India
(E-mail: mms@math.unipune.ernet.in)

(Received 19 May 2000; accepted 17 October 2000)

We show that binary matroid is Eulerian if and only if every element of it is contained in an odd number of circuits. It is proved that a binary matroid is Eulerian if and only if the ground set has an odd number of partitions into circuits. Corresponding results for bipartite binary matroids are derived.

Key Words : Binary Matroid; Eulerian Matroids; Bipartite Matroids; Circuit; Cutset; Partitions

1. INTRODUCTION

A matroid M is a pair (S, \mathcal{F}) where S is a finite set and \mathcal{F} is a collection of subsets of S, called independent sets of M, with the following properties:

1. $\phi \in \mathcal{F}$,
2. if $X \in \mathcal{F}$ and $Y \subseteq X$ then, $Y \in \mathcal{F}$,
3. if $X \in \mathcal{F}$ and $Y \in \mathcal{F}$ and $|X| > |Y|$ then there exists an element $x \in X \setminus Y$ such that $Y \cup \{x\} \in \mathcal{F}$.

The set S is known as ground set of M. A maximal independent set of M is a base of M. A subset of S not belonging to \mathcal{F} is said to be dependent. A minimal dependent subset of S is called a circuit of M. The set of all bases of M will be denoted by \mathcal{B}. The matroid M^* whose ground set is S and whose set of bases is $\mathcal{B}^* = \{S \setminus B : B \in \mathcal{B}\}$ is called the dual of a matroid M. A circuit of M^* is called a cutset (or co-circuit) of M.

Generalizing graph-theoretic concepts we call a matroid $M = (S, \mathcal{F})$ an Eulerian matroid if there exist disjoint circuits C_1, C_2, \ldots, C_n such that

$$S = C_1 \cup C_2 \cup \ldots \cup C_n.$$

We define M to be a bipartite matroid if every circuit of M has even number of elements.

A matroid $M = (S, \mathcal{F})$ is defined to be binary if the symmetric difference of any set of circuits of M is a union of disjoint circuits of M. The dual M^* of a binary matroid M is also a binary matroid (see [3]). We have the alternative definition that a matroid is binary if and only if
for every circuit \(C \) and a cutset \(D \) of \(M \) \(\mid C \cap D \mid \) is even. If \(M = (S, \mathcal{F}) \) is a matroid and \(T \subseteq S \) then the deletion of \(T \) from \(M \) denoted by \(M_{/T} \) is a matroid \((S - T, \mathcal{F}') \) where a subset \(X \) of \(S - T \) is in \(\mathcal{F}' \) if and only if \(X \in \mathcal{F} \). We follow the notation and terminology of [3] and [7].

We need the following results.

Proposition 1.1\(^2\) — Let \(M = (S, \mathcal{F}) \) be a binary matroid and \(X \subseteq S \). Then \(X \) is disjoint union of circuits of \(M \) if and only if \(X \) intersects each cutset evenly.

Result 1.2\(^6\) — A binary matroid is Eulerian if and only if its dual matroid is bipartite.

2. MAIN RESULTS

Theorem 2.1 — A binary matroid \(M = (S, \mathcal{F}) \) is Eulerian if and only if every element of \(S \) is contained in an odd number of circuits of \(M \).

This result is not true for non-binary matroids as shown by the following example.

Example — Consider the uniform matroid \(U_{6, 2} \) of rank 2 on a six element set. This is a non-binary Eulerian matroid. Every 3-element set is a circuit. The number of circuits containing an element \(x \) is equal to the number of ways to choose remaining two elements in a circuit from the remaining 5-elements of \(U_{6, 2} \). Thus, every element of \(U_{6, 2} \) is contained in ten circuits of \(U_{6, 2} \). On the other hand, \(U_{4, 2} \) is non-binary matroid. Every 3-element set in it is a circuit. So number of circuits containing an arbitrary element \(x \) is equal to the number of ways to choose remaining 2 elements in a circuit from the remaining 3-elements of \(U_{4, 2} \). This number is 3, an odd number, but \(U_{4, 2} \) is not Eulerian.

PROOF OF THE THEOREM: Suppose that a binary matroid \(M = (S, \mathcal{F}) \) is Eulerian. So by result 1.2, every cutset of \(M \) has even cardinality. Let \(x \in S \). If \(x \) is a loop then it belongs to exactly one cycle i.e., to an odd number of cycles and the result is proved. Assume therefore that \(x \) is not a loop. We show that \(x \) is contained in an odd number of circuits of \(M \). Let \(\Delta \mathcal{F}_x \) denote the set of circuits containing \(x \) and \(\Delta \mathcal{F}_x \) denote the symmetric difference of members of \(\mathcal{F}_x \). Note that \(\Delta \mathcal{F}_x \) consists of those element which are contained in an odd number of circuits containing \(x \). Let \(C(x_1, x_2, \ldots, x_n) \) denote the number of circuits containing \(x_1, x_2, \ldots, x_n \). Firstly, we prove that \(X = \Delta \mathcal{F}_x \cup \{x\} \) intersects each cutset of \(M \) in an even number of elements. Let \(D \) be a cutset of \(M \). If \(x \notin D \), then \(D \cap X = D \cap (\Delta \mathcal{F}_x \cup \{x\}) = D \cap \Delta \mathcal{F}_x \) is even by binarity of \(M \). Now, let \(x \in D \) and \(D \cap X \) has odd number of elements. Then we will arrive at a contradiction. Suppose \(D = \{x_1, x_2, \ldots, x_n\} \). So by Result 1.2, \(n \) is odd. The set \((D \cap X) - x \) is even and therefore the sum

\[
\sum_{i=1}^{n} C(x, x_i) \text{ is also even. So, at least one of the } n \text{ terms must be even. Let } C(x, x_i) \text{ be even and let } D_2 \text{ be any cutset containing } x \text{ but not } x_1. \text{ Let } C(x, x_1) \text{ be even and let } D_2 \text{ be any cutset containing } x \text{ but not } x_1. \text{ Let } D_2 = \{x, y_1, y_2, \ldots, y_{n'}\}. \text{ By Result 1.2, } n' \text{ is odd. Now } C(x, x_1) = \sum_{i=i}^{n'} C(x, x_1, y_i) \text{ is even, therefore at least one of the } n' \text{ terms must be even; say } C(x, x_1, y_1) \text{ is even.}
\]
Let D_3 be any cutset containing x but neither x_1 nor y_1 etc. Continue this process until cutset D_i can not be chosen. Then the i elements x_1, y_1, \ldots together with x form a circuit and so $C(x, x_1, y_1, \ldots) = 1$. But we also have $C(x, x_1, y_1, \ldots)$ even, which is a contradiction. Therefore, $D \cap X$ must have an even number of elements.

Now by Proposition 1.1, X is a disjoint union of circuits of M. Also, $\Delta \lambda_x$ is a disjoint union of circuits of M and $X = \lambda_x \bigcup \{x\}$. So, we must have $x \in \Delta \lambda_x$. Consequently, the number of circuits containing x must be odd.

Conversely, suppose that a matroid $M = (S, \mathcal{F})$ is binary and every element is contained in an odd number of circuits. In order to prove that M is Eulerian, we prove that every cutset of M is of even size.

Let D be any cutset of M. As mentioned earlier, $C(x)$ denotes the number of circuits containing the element x. Since M is binary every circuit of M intersects D evenly the sum $\Sigma C(x)$ over all $x \in D$ will count each circuit an even number of times. So, the sum $\sum_{x \in D} C(x)$ will be even. By assumption each term is odd, so there must be an even number of terms, thereby showing D to be even. Consequently, M is Eulerian.

As an immediate consequence of the above theorem, we have the following characterization of Eulerian binary matroid.

Corollary 2.2 — A binary matroid $M = (S, \mathcal{F})$ is Eulerian if and only if symmetric difference of all circuits of M equals S.

Combining Theorem 2.1 with the Result 1.2, we get a corresponding characterisation for bipartite matroids.

Corollary 2.3 — A binary matroid $M = (S, \mathcal{F})$ is bipartite if and only if every element is contained in an odd number of cutsets of M.

The following theorem gives a characterisation of binary Eulerian matroids in terms of the number of partitions of a ground set into circuits of a matroid. This generalizes to the binary matroids the characterization of Eulerian graphs due to Bondy and Halberstan

Theorem 2.4 — A binary matroid $M = (S, \mathcal{F})$ is Eulerian if and only if S can be partitioned into circuits of M in odd number of ways.

Proof: If in a binary matroid M the ground set S can be partitioned into circuits of M in odd number of ways then it surely has at least one circuit partition, therefore M is Eulerian.

Now suppose that $M = (S, \mathcal{F})$ is Eulerian and binary. Let $x \in S$ and C_1, C_2, \ldots, C_k be the circuits containing x. Then by Theorem 2.1, $k \equiv 1 \pmod{2}$. We proceed by induction on $|S|$. If $|S| = 1$ then S has a trivial partition consisting of a loop.

Let $|S| = n > 1$. If $S_i = S - C_i = \phi$ for some i, then $k = 1$ and S is a circuit with $S = \{C_1\}$ as its unique circuit partition. Assume therefore that $S_i \neq \phi, 1 \leq i \leq k$. By induction the ground set $S - C_i$ of the matroid $M - C_i = (S - C_i, \mathcal{F} - C_i)$ has an odd number of circuit partitions. This yields an odd number of circuit partitions of S in M; containing the circuit C_i. Denote this number by $\tau(C_i)$ and denote by $\tau(S)$ the number of all circuit partitions of S in M.

Consequently,
\[\tau(S) = \sum_{i=1}^{k} \tau(C_i) = k \equiv 1 \pmod{2}, \]

i.e., \[\tau(S) \equiv 1 \pmod{2}. \]

Remark 2.5: This also does not hold for non-binary matroids as shown by the following example.

Consider the uniform matroid \(U_{6,2} \) of the above example. Since every 3-element set is a circuit, there are \(^6C_3 \), i.e., 20 circuits. Now any circuit and its complement in the 6-element set which is also a circuit form a circuit partition of the ground set of \(U_{6,2} \). Thus, in all there are ten, an even number of circuit partitions of the ground set of \(U_{6,2} \).

Combining Theorem 2.4 and the Result 1.2, we give another characterization of binary bipartite matroids in terms of the number of partitions of ground set into cutsets of a matroid.

Corollary 2.6 — A binary matroid \(M = (S, \mathcal{F}) \) is bipartite if and only if \(S \) can be partitioned into cutsets of \(M \) in odd number of ways.

3. Algorithm for Circuit Partitions of a Ground Set of an Eulerian Matroid

Here, we present a description of an algorithm for the construction of the set \(\mathcal{P}(S) \), of all circuit partitions of \(S \) in a binary Eulerian matroid \(M = (S, \mathcal{F}) \). Every Eulerian matroid has at least one circuit, \(C \) (say) and \(M \setminus C = (S-C, \mathcal{F}') \) is also Eulerian. We use this to describe an algorithm to obtain circuit partitions of arbitrary binary Eulerian matroid.

Suppose \(M = (S, \mathcal{F}) \) is a Eulerian matroid and \(S = \{x_1, x_2, \ldots, x_n\} \). Choose an arbitrary element \(x \in S \), \(x = x_1 \) say. A first subroutine produces in lexicographic order the set \(\mathcal{L}_x \) of all circuits containing \(x \). For \(C_i \in \mathcal{L}_x \), the matroid \(M \setminus C_i = (S-C_i, \mathcal{F}') \) is Eulerian. A second subroutine produces the set \(\mathcal{P}_i \) of all circuit partitions of \(S \) in the matroid \(M \) which have circuit \(C_i \) in common. This is achieved by determining \(\mathcal{P}(S-C_i) \) and forming

\[\mathcal{P}_i = \{\{C_i\} \cup P | P \in \mathcal{P}(S-C_i)\}. \]

Then we note that \(\mathcal{P}_i \cup \mathcal{P}_j = \phi \) for \(i \neq j \), \(1 \leq i, j \leq |\mathcal{L}_x| = \gamma_x \) where \(\gamma_x \) is the number of circuits containing \(x \).

Now, it follows that

\[\gamma_x \]

\[\mathcal{P}(S) = \bigcup_{i=1}^{\gamma_x} \mathcal{P}_i \]

is the required set. Here each \(\mathcal{P}_i \) is a partition of \(S \) into circuits of \(M \).
Remark 3.1: (1) We have $|\mathcal{P}(S)| = 1$ for a matroid M each of whose component is a circuit.

(2) By Theorem 2.4, the number of partitions of S into circuits of M is odd if and only if $M = (S, \mathcal{F})$ is binary Eulerian matroid. Hence,

$$|\mathcal{P}(S)| \equiv 1 \pmod{2}$$

in case of binary Eulerian matroid.

REFERENCES

5. D. J. Wilde, J. comb. Theory (B) 18 (1975) 260-64.